NON-MARKET VALUATION AND NATURAL AREAS: ADVANTAGES AND LIMITATIONS

Renata Rimsaite, Postdoctoral Scholar Melissa M. Kreye, Assistant Professor

Department of Ecosystem Science and Management
The Pennsylvania State University

ACES 2018
December 6, 2018
Washington, DC

Expected Outcomes

- Understand important considerations for non-market valuation
- Become familiar with valuation terms and concepts
- Know which types of valuation approaches are often used
- Understand the limitations and advantages of these approaches

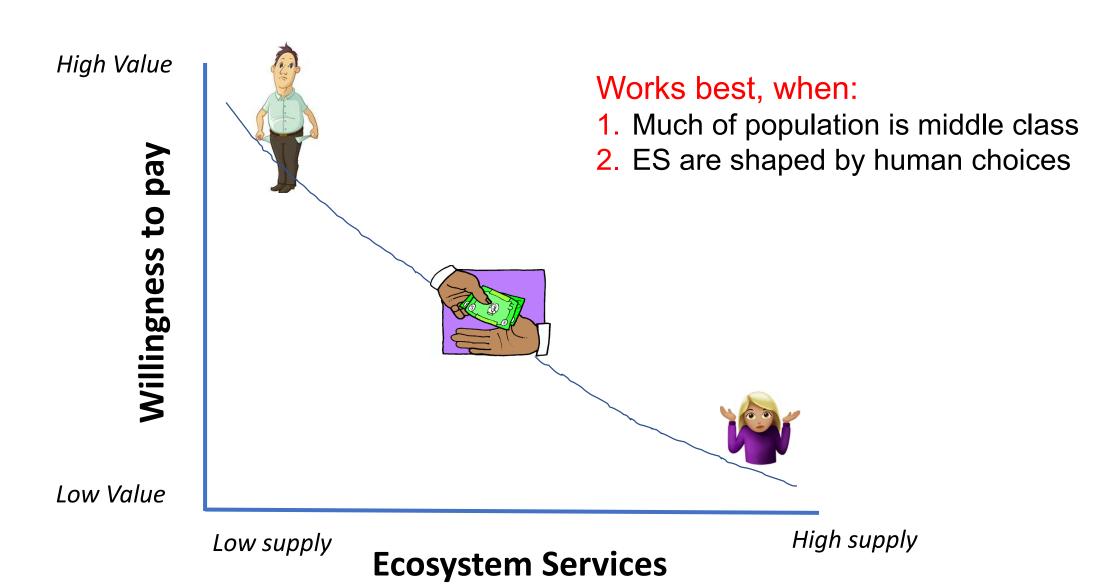
Motivation

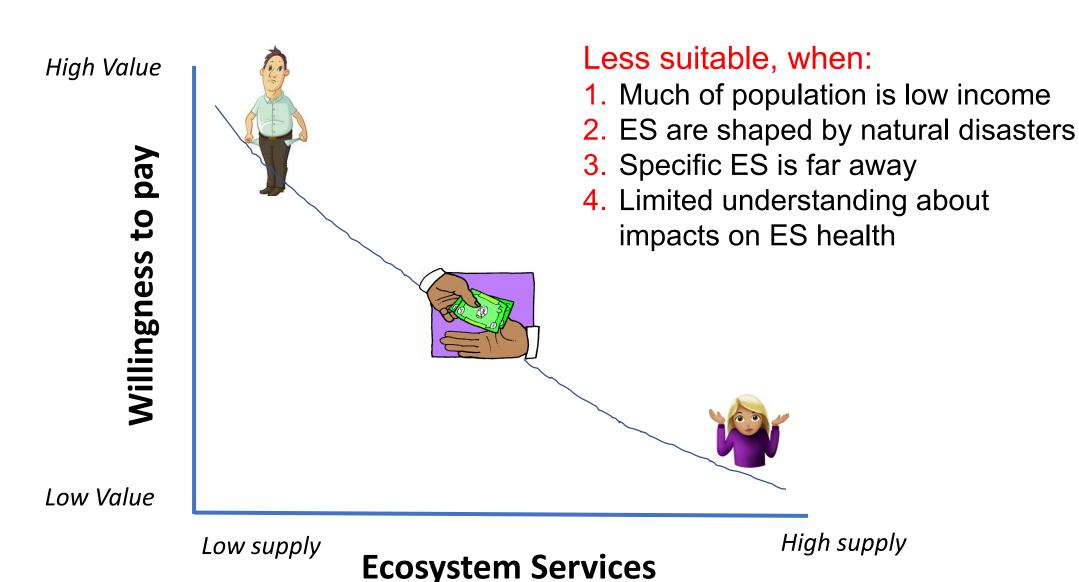
Motivation

Market valuation

Non-market valuation

- 1. Ecosystem services must be in relatively good supply
- 2. People have to be aware of changes in services
- 3. People need to have enough discretionary income to express their preferences





High Value pay to Willingness Low Value High supply Low supply **Ecosystem Services**

Valuation: Two approaches

Revealed Preferences

Stated Preferences

Basic idea:

- Consumers seek to maximize their utility by purchasing various items
- Items consist of different characteristics
- Each characteristic affects the price of the item

Basic idea:

- Consumers seek to maximize their utility by purchasing various items
- Items consist of different characteristics
- Each characteristic affects the price of the item

Example:

We want to know the value of a scenic view near a residential area.

Basic idea:

- Consumers seek to maximize their utility by purchasing various items
- Items consist of different characteristics
- Each characteristic affects the price of the item

Example:

We want to know the value of a scenic view near a residential area.

Steps:

1. Collect data on house prices and all characteristics

Basic idea:

- Consumers seek to maximize their utility by purchasing various items
- Items consist of different characteristics
- Each characteristic affects the price of the item

Example:

We want to know the value of a scenic view near a residential area.

- 1. Collect data on house prices and all characteristics
 - Size | Age | Layout | Construction quality...

Basic idea:

- Consumers seek to maximize their utility by purchasing various items
- Items consist of different characteristics
- Each characteristic affects the price of the item

Example:

We want to know the value of a scenic view near a residential area.

- 1. Collect data on house prices and all characteristics
 - Size | Age | Layout | Construction quality...
 - Location (location location!..)

Basic idea:

- Consumers seek to maximize their utility by purchasing various items
- Items consist of different characteristics
- Each characteristic affects the price of the item

Example:

We want to know the value of a scenic view near a residential area.

- 1. Collect data on house prices and all characteristics
 - Size | Age | Layout | Construction quality...
 - Location (location location!..)
 - Distance to work/shopping | crime rate

Basic idea:

- Consumers seek to maximize their utility by purchasing various items
- Items consist of different characteristics
- Each characteristic affects the price of the item

Example:

We want to know the value of a scenic view near a residential area.

- 1. Collect data on house prices and all characteristics
 - Size | Age | Layout | Construction quality...
 - Location (location location!..)
 - Distance to work/shopping | crime rate | scenic view...

Basic idea:

- Consumers seek to maximize their utility by purchasing various items
- Items consist of different characteristics
- Each characteristic affects the price of the item

Example:

We want to know the value of a scenic view near a residential area.

- 1. Collect data on house prices and all characteristics
 - Size | Age | Layout | Construction quality...
 - Location (location location!..)
 - Distance to work/shopping | crime rate | scenic view...
- 2. Use statistical techniques to
 - Understand how much of the variation in house prices is due to the variation in each characteristic
 - Separate the part of the variation in prices that is due to the difference in beautiful views

Hedonic Pricing

82 63 ss

Advantages:

- Based upon actual choices
- Property data is relatively easy to collect and reliable
- With proper statistical analysis we can get precise values

Hedonic Pricing

55 65 65 FE

Advantages:

- Based upon actual choices
- Property data is relatively easy to collect and reliable
- With proper statistical analysis we can get precise values

- Assumption that consumers are informed about environmental qualities
- Results may be very site-specific
- Statistic techniques & manipulations of large datasets can be complicated

Basic idea:

- Placing values on recreation opportunities
- To understand the trade-offs travelers make between environmental quality and travel cost
- To compare benefits with costs of maintaining the site for visitors

Basic idea:

- Placing values on recreation opportunities
- To understand the trade-offs travelers make between environmental quality and travel cost
- To compare benefits with costs of maintaining the site for visitors

Steps:

1. Collect data from visitors about the number of visits and travel distance

Basic idea:

- Placing values on recreation opportunities
- To understand the trade-offs travelers make between environmental quality and travel cost
- To compare benefits with costs of maintaining the site for visitors

- 1. Collect data from visitors about the number of visits and travel distance
 - Travelers from the same zone should have similar:

Basic idea:

- Placing values on recreation opportunities
- To understand the trade-offs travelers make between environmental quality and travel cost
- To compare benefits with costs of maintaining the site for visitors

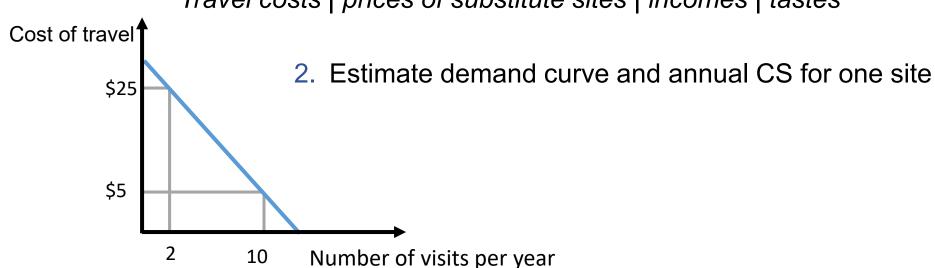
- 1. Collect data from visitors about the number of visits and travel distance
 - Travelers from the same zone should have similar:
 - Travel costs | prices of substitute sites | incomes | tastes

Basic idea:

- Placing values on recreation opportunities
- To understand the trade-offs travelers make between environmental quality and travel cost
- To compare benefits with costs of maintaining the site for visitors

- 1. Collect data from visitors about the number of visits and travel distance
 - Travelers from the same zone should have similar:
 Travel costs | prices of substitute sites | incomes | tastes
 - 2. Estimate demand curve and annual CS for one site

Basic idea:


- Placing values on recreation opportunities
- To understand the trade-offs travelers make between environmental quality and travel cost
- To compare benefits with costs of maintaining the site for visitors

Steps:

- 1. Collect data from visitors about the number of visits and travel distance
 - Travelers from the same zone should have similar:

Travel costs | prices of substitute sites | incomes | tastes

Advantages:

Relatively inexpensive

Advantages:

Relatively inexpensive

- Difficult to accurately estimate visitors' travel cost
 - 1. Opportunity cost of time spent traveling
 - Hourly wage | non-wage income
 - Monetary costs
 - Operating cost of vehicle used to travel
 - Overnight stay costs while traveling to that site (e.g., campsite fees, motels)
 - Tolls | parking fees | admission fees

Advantages:

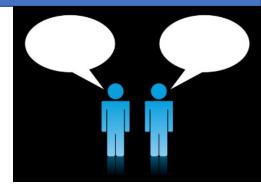
Relatively inexpensive

- Difficult to accurately estimate visitors' travel cost
 - 1. Opportunity cost of time spent traveling
 - Hourly wage | non-wage income
 - Monetary costs
 - Operating cost of vehicle used to travel
 - Overnight stay costs while traveling to that site (e.g., campsite fees, motels)
 - Tolls | parking fees | admission fees
- Difficult to analyze multiple-purpose trips
 - People stop at the lake on the way to somewhere..

Advantages:

Relatively inexpensive

- Difficult to accurately estimate visitors' travel cost
 - 1. Opportunity cost of time spent traveling
 - Hourly wage | non-wage income
 - 2. Monetary costs
 - Operating cost of vehicle used to travel
 - Overnight stay costs while traveling to that site (e.g., campsite fees, motels)
 - Tolls | parking fees | admission fees
- Difficult to analyze multiple-purpose trips
 - People stop at the lake on the way to somewhere..
- Value is underestimated when the focus is on private or local park
 - Travel needs to have an effect on visitors' income



Stated Preference approaches

Basic idea:

- Sample of people are asked to state their preferences for environmental qualities
 - How much \$ they are WTP for a change in a certain ecosystem service
- Obtained information is extrapolated to represent the population
- Estimate market demand and CS for the associated ES

Stated Preference approaches

Basic idea:

- Sample of people are asked to state their preferences for environmental qualities
 - How much \$ they are WTP for a change in a certain ecosystem service
- Obtained information is extrapolated to represent the population
- Estimate market demand and CS for the associated ES

Survey:

- Questions must be very carefully stated
- Clear description of the scenario
 - Payment vehicle
- Collect data on WTP for a hypothetical changes to ES
- Collect data on respondent characteristics

Stated Preference

Advantages:

- Can be applied in many ways to inform a diversity of policy decisions
- Can predict accurate values

Stated Preference

Advantages:

- Can be applied in many ways to inform a diversity of policy decisions
- Can predict accurate values

- Hypothetical bias
 - Difference between hypothetically answering what one is WTP and actually paying for environmental services
- Response bias
 - If survey respondents are not representative of the larger populations
- Survey mode influence
 - Internet | telephone | in-person | mail | mixed

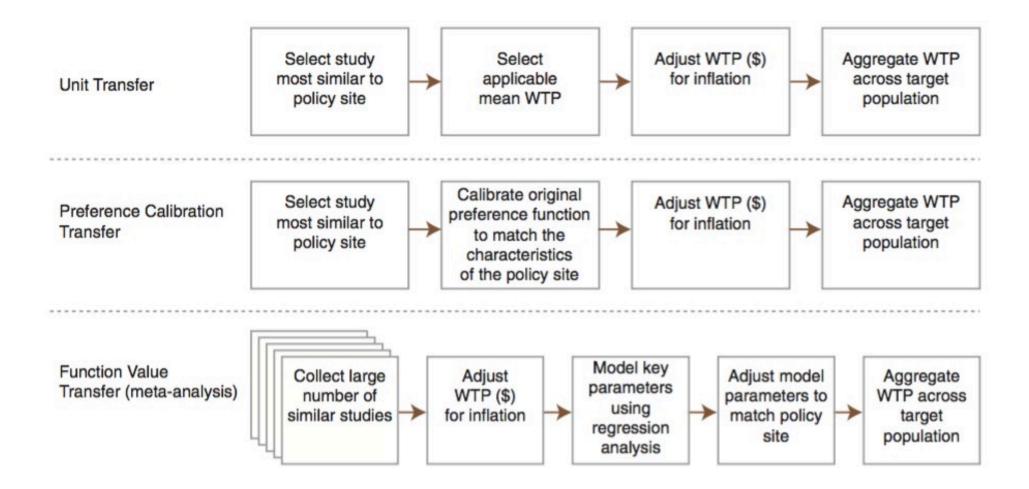
Basic Idea:

 Taking results from one or more valuation studies and applying them to value an environmental good in a new context.

Basic Idea:

 Taking results from one or more valuation studies and applying them to value an environmental good in a new context.

- Used when:
 - 1. Conducting an original study would:
 - Be too expensive
 - Lack available data
 - Be too time consuming


Basic Idea:

 Taking results from one or more valuation studies and applying them to value an environmental good in a new context.

- Used when:
 - 1. Conducting an original study would:
 - Be too expensive
 - Lack available data
 - Be too time consuming
 - 2. There are studies that can be used which address a *similar* problem in a *similar* context

Advantage:

Relative simplicity

Advantage:

Relative simplicity

- Original study may be flawed
- Differences between the policy site and the study site are too severe:
 - Preferences
 - Goods
 - Sociodemographic characteristics
 - Availability of substitutes

Concluding Remarks

- Decision-makers should include ecosystem service values
- Failing to account for diminished services might result in
 - Less effective policies and
 - Reduced social welfare
- Future research should focus on
 - Advancing valuation methods
 - Continuing to investigate how ecosystem service values are perceived by the general public

Thank You!

Renata Rimsaite

Postdoctoral Scholar

Ecosystem Science and Management
The Pennsylvania State University

rzr143@psu.edu

